

FACULTEIT INGENIEURSWETENSCHAPPEN

Grid-Enabled Adaptive Surrogate Modeling for Computer-Based Design

SUMO Lab

INTEC Broadband Communication Networks Research Group (IBCN)

Outline

- Who are we?
- Introduction
- Surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

Outline

- Who are we?
 - who are we
 - what do we do
- Introduction
- Surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

Who are we?

Faculty of Engineering

Department of Information Technology (INTEC)

INTEC Broadband Communication Networks (IBCN)

Surrogate Modeling Lab

Who are we?

• •

INTEC

Members

IBCN

- 8 professors
- 7 postdocs
- 84 research members

■ SUMO lab

- Professors
 - Prof. dr. ir. Tom Dhane
 - Prof. dr. ir. Eric Laermans
- PhD students
 - Dirk Gorissen
 - Karel Crombecq

- Postdocs
 - Dirk Deschrijver

- Ivo Couckuyt
- Eng. Francesco Ferranti

What do we do

What do we do

Adaptive Surrogate Modeling

efficient and accurate characterization, modeling and simulation of complex systems in science and engineering

Outline

- Who are we?
- Introduction
 - Surrogate model ?
 - What are we looking for ?
 - Existing approaches and techniques
- Surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

- thousand years ago : experimental science
 - description of natural phenomena

- thousand years ago : experimental science
 - description of natural phenomena

Newton's laws, Maxwell's equations ...

$$\left(\frac{a}{a}\right)^2 = \frac{4\pi G\rho}{3} - K\frac{c^2}{a^2}$$

- thousand years ago : experimental science
 - description of natural phenomena

Newton's laws, Maxwell's equations ...

simulation of complex phenomena

$$\left(\frac{a}{a}\right)^{\mathsf{r}} = \frac{4\pi\mathsf{G}\rho}{3} - K\frac{c^2}{a^2}$$

- thousand years ago : experimental science
 - description of natural phenomena

Newton's laws, Maxwell's equations ...

simulation of complex phenomena

- massive computing
- large data exploration and mining
- unify: theory, experiment, and simulation

(With thanks to Jim Gray)

$$\left(\frac{a}{a}\right)^2 = \frac{4\pi G\rho}{3} - K\frac{c^2}{a^2}$$

Computational Modeling

Real-world Data

Distributed Data & Computing

Interpretation, Insight, Design

system modeling

- real world
 - I/O system
 - stimulus / response

• examples: *mechanical, electrical, optical, electronic, chemical ... systems*

system modeling

- real world
 - I/O system
 - stimulus / response

simulation model

- approximation
- discretization

- model = abstraction of a real system
- simulation = virtual experiment

system modeling

- real world
 - I/O system
 - stimulus / response
- simulation model
 - approximation
 - discretization
- surrogate model
 - metamodel, RSM, emulator
 - scalable analytical model
 - "model of model"

simulation model : widely used in engineering design

- each new sample in the input design space, requires new computer simulation
- accurate, high fidelity numerical model

however, simulation models...

- ...complex
- ...time consuming to run
- …optimization is expensive
- ...not always available
- ...highly specialized
 - * scalability?
 - model chaining?
 - integration with other tools?
 - hardware / software requirements?
 - licensing?
 - **+**

surrogate model

- analytical surrogate model
 - one-time upfront time investment
 - harness the power of the grid for simulation execution
 - adaptive sampling
- covers complete design space
 - design optimization, "what-if" analysis, sensitivity analysis

accuracy / speed trade-off

simulators

- domain-specific
- high-accuracy

models

2nd order polynomial
Response Surface Models (RSM)

best of both worlds

 combining accuracy & generality of simulators, with the speed & flexibility of models

advantages

- instant evaluation
- compact formulation (few 100 parameters)

applications

- prototyping
- design space exploration
- design optimization
- sensitivity analysis
- what-if analysis
- ...

surrogate modeling challenges

- experimental design?
- sample selection?
- model type?
- model tuning?
- black box grey box white box?
- •
- only as good as the available data / designer
- surrogate models are still models
 - model assessment & model selection are crucial

Grid-enabled adaptive algorithm for automatic surrogate model construction

- fully automated
- minimize prior, problem specific knowledge
 - trade-off
- minimal number of samples
 - computationally expensive
- support for distributed computing
- pre-defined accuracy
- pluggable / extensible
 - no one-size-fits-all
- integrate easily into the design process

Existing approaches

existing approaches

- discrete model library
 - Database
- look-up tables with local curve fitting
- hand made analytical models
- •

Existing approaches

common drawbacks

- oversampling / undersampling
 - waste of resources / important details missed
- overmodeling / undermodeling
- accuracy unknown
- prior knowledge required
- problem specific
- "not invented here" syndrome

highly skilled modeler several months of work

Outline

- Who are we?
- Introduction
- Surrogate modeling
 - adaptive modeling
 - adaptive sampling
 - distributed computing
 - adaptive surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

Surrogate modeling

scalable surrogate model, valid over design space

- 3 key technologies (+ 1 in development)
 - adaptive data sampling
 - adaptive model building
 - distributed computing
 - optimization

Surrogates – *adaptive sampling*

- traditional approach
 - uniform sampling
 - oversampling
 - undersampling

adaptive sampling

- optimal sample distribution
- Reflective Exploration

Surrogates – *adaptive modeling*

- traditional approach
 - local approximation
 - overmodeling
 - undermodeling

adaptive modeling

- global approximation
- optimal model complexity

Surrogates – distributed computing

- traditional approach
 - sequential computing

Surrogates – *optimization*

- traditional approach
 - classic optimization
 - not well suited for computational expense simulations

Optimization

- surrogate-assisted optimization
 - global surrogate model
 - intermediate surrogate models & zoom-in

Adaptive surrogate modeling

Outline

- Who are we?
- Introduction
- Surrogate modeling
- SUMO Toolbox
 - control flow & design
 - automatic model type selection
 - integrating gridcomputing
- Examples
- Conclusions

SUMO Toolbox – Control Flow

SUrrogate MOdeling (SUMO) Toolbox

^{*} The Model Builder and Sample Evaluator run in parallel (non blocking)

SUMO Toolbox – *Pluggability*

levels of pluggability

adaptive modeling

- supports multiple model types
 - Polynomial/Rational functions
 - Artificial Neural Networks
 - RBF models
 - Support Vector Machines (LS-SVM, epsilon-SVR, nu-SVR)
 - Kriging models
 - Splines

adaptive sampling

- modeling algorithm (BFGS, pattern search, GA, PSO, ...)
- initial experimental design (central composite, LHS, ...)
- sequential design (error-based, density-based, hybrid, ...)
- model selection (crossvalidation, R², AIC, ...)
- sample evaluation (local, distributed)

distributed computing

SUMO Toolbox – *Pluggability*

SUMO Toolbox – *General remarks*

SUMO Toolbox

- straightforward configuration in XML
- modeling primitives can be combined in many ways
- sensible defaults but many 'expert' options available
 - user remains in control
- modular design to allow 3rd party extensions
- extensive logging of what is going on
- intermediate models (and plots) stored for further reference
- profiling framework to track modeling progress
- GUI Tool for easy visualization and data exploration

SUMO Toolbox – GUI

Available from v5.1

however, which plugins to use?

most important within adaptive modeling

many surrogate model types available:

 Rational functions, RBF models, Kriging, MLP, RBFNN, SVM, LS-SVM, regresison trees, splines, ...

which type to use?

- problem & data dependent
- little theory available
 - e.g., rational functions and EM data
- usually pragmatic
- impossible to solve in general

- each model is characterized by parameter set θ
- how to select θ_{i} ?
 - by hand?
 - rule of thumb?
 - optimization algorithm?
 - BFGS, GA, pattern search, simulated annealing, PSO, ...
- optimization landscape is dynamic!
 - cfr. adaptive sampling

- SUMO Toolbox makes it trivial to run and compare different methods
- however, an idea...
 - Tackle the model type selection and model parameter optimization problem in one speciated evolutionary algorithm
- let evolution decide
 - survival of the fittest
 - multiple final solutions possible
 - hybrid solutions possible (cfr. ensembles)
- interesting population dynamics?

island model (migration model)

- most natural
- ring topology with different migration directions
- NB: inter-model speciation, not intra-model

heterogeneous recombination

Rational model x SVM = ???

use ensembles

- phenotypic (behavioral) recombination
- avoid when possible
- many ensemble methods
 - use simple average
 - others can easily be used instead

■ 3D example (*z*=0)

$$f(x,y,z) = 7 \frac{\sin(\sqrt{x^2 + y^2}) + \epsilon}{\sqrt{x^2 + y^2}} + 3|x - y|^{1/2} + 0.01z$$

Profile for each generation

Generation number

- --- EnsembleModel
- -->- SVMModel
- ◆ LSSVMModel
 - PolynomialModel
- RBFModel

Generated using the M3-toolbox

- promising results
- computation time ≤ pure sequential
- delivers more insight
- however
 - model type selection is not solved absolutely
 - theoretically impossible without assumptions
 - GA meta parameters expected to be more robust
 - sensitivity to migration/selection parameters?
 - constraints on reproducibility?

simulations are expensive

- adaptive sampling
- 1-time up front investment
- provide interface to the grid

goal

- transparent integration
- avoid middleware lock-in
- hide grid details

integration on 3 levels

- resource level
- scheduling level
- service level

resource level

- raw distribution
- un simulations in parallel

SampleEvaluator abstraction

- cfr. flow chart
- clean object oriented interface
- translates modeler requests into middleware specific jobs
- support multiple backends
 - Sun Grid Engine
 - LCG middleware
 - APST

scheduling level

- data points have different priorities
 - e.g., domain borders, optima, sparse regions, ...
- compute resources are heterogeneous
- resources are shared (dynamic!)
- integrate grid resource information and modeling information into scheduling decisions

Application and resource aware scheduling

service level

- integration as part of a larger service oriented architecture (SOA)
- easy access and integration into the design process
 - web browser, Jini, SOAP, ...
- complicated workflows possible

Outline

- Who are we?
- Introduction
- Surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

Example - Step Discontinuity (SD)

Step discontinuity in a rectangular waveguide

- Frequency: 7-13 GHz
- Step length [l]: 2-8 mm
- Gap height [h]: 0.5-5 mm
- Waveguide width [a]: 22.86 mm
- Waveguide height [b]: 10.16 mm

Distributed backend:

 Remote 256 node SGE cluster

SD : First output

SD: Second output

Simulator configuration

<Simulator>

```
<Name>Step Discontinuity</Name>
```

```
<InputParameters>
```

```
<Parameter name="frequency" type="real"/>
```

```
<Parameter name="gapHeight" type="real"/>
```

```
<Parameter name="stepLength" type="real"/>
```

```
InputParameters>
```

```
<OutputParameters>
```

```
<Parameter name="S11" type="complex"/>
```

```
<Parameter name="S12" type="complex"/>
```

</OutputParameters>

<Implementation>

```
<Executable platform="unix" arch="amd64">StepDiscontinuity</Executable>
```

<DataFiles>.../DataFiles>

</Simulator>

Toolbox configuration


```
<ToolboxConfiguration version="5.1">
 <Plan>
       <SampleSelector>gradient</SampleSelector>
       <Measure type="CrossValidation" target=".0001" errorFcn="absoluteRMS" use="on" />
       <Run>
                 <Simulator>StepDiscontinuity.xml</Simulator>
                 <SampleEvaluator>sqe</SampleEvaluator>
                 <Outputs>
                      <Output name="S11" complexHandling="complex">
                         <AdaptiveModelBuilder>poly</AdaptiveModelBuilder>
                      </Output>
                      <Output name="S12" complexHandling="split">
                         <AdaptiveModelBuilder>kriging</AdaptiveModelBuilder>
                      </Output>
                      <Output name="S11,S12" complexHandling="modulus">
                         <AdaptiveModelBuilder>anngenetic</AdaptiveModelBuilder>
                      </Output>
                 </Outputs>
```


Modeling progres - Movie

Results – Rational models

Results – RBF models

Electromagnetic example

- iris in rectangular waveguide (From Lamecki 2005)
 - Simulation of scattering parameters

Input : frequency, iris height, length, width,

• Output : S11, S12

Chemistry example

- methane air combustion (From Ihme 2007)
 - Simulation of temperature

Input : mixture fraction variable z,

reaction progress variable c

Output : temperature

Figure 5.3: Solution of the steady laminar flamelet equations as a function of mixture fraction z and progress variable c; (a) temperature (K) and (b) chemical source term $(kg/(m^3s)$ (Source: [77])

Aerodynamics example

re-usable Langly Glide Back Booster (LGBB)

(From Gramancy 2004 / NASA)

Simulation of lift

Input

: mach number, angle of attack, slip slide angle

Output : lift

Geology example

- **seamount** (From Parker 1987)
 - Elevation data from a submerged mountain

Input : latitude, longitude

Output : depth

Automotive example

- motorcycle accident (From Silverman 1987)
 - Simulate a motorcycle crash against a wall
 - Input : time in milliseconds since impact.
 - Output : the recorded head acceleration (in g)

Synthetic example

Schwefel Function

Classic 2D test function form optimization

Multimedia example

- Video quality data (From Nick Vercammen, IBBT)
 - How does streaming/encoding affect quality

Input : encoding, transmission parameters

Output : quality metric

Networking example

- Wireless sensor data (From Sensor Lab, IBBT)
 - Model reception quality
 - Input : sender/receiver coordinates
 - Output : reception quality metric

Plot of avg_LQI using ANNModel (built with 29646 samples)

David

■ David data

(From the Digital Michalangelo project, Stanford University)

Outline

- Who are we?
- Introduction
- Surrogate modeling
- SUMO Toolbox
- Examples
- Conclusions

Conclusions

- compact scalable surrogate models
 - metamodels, response surface models

- fully automated
 - adaptive model selection
 - adaptive sample selection
 - distributed computing
 - (optimization)

- SUrrogate MOdeling (SUMO) Toolbox
 - easy to setup and run different modeling experiments
 - natural platform for benchmarking different techniques
 - download from http://www.sumo.intec.ugent.be

Questions

• Questions ?